Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 46
Determine the derivative of $\displaystyle y = \sec h^{-1} \sqrt{1 - x^2}$. Simplify where possible.
$
\begin{equation}
\begin{aligned}
y' =& \frac{d}{dx} (\sec h^{-1} \sqrt{1 - x^2})
\\
\\
y' =& \frac{1}{\sqrt{1 - x^2} \cdot \sqrt{1 - (\sqrt{1 - x^2})^2}} \cdot \frac{d}{dx} (\sqrt{1 - x^2})
\\
\\
y' =& \frac{1}{\sqrt{1 - x^2} \cdot \sqrt{1 - (1 - x^2)}} \cdot \frac{d}{dx} (1 - x^2)^{\frac{1}{2}}
\\
\\
y' =& \frac{1}{\sqrt{1 - x^2} \cdot \sqrt{1 - 1 + x^2}} \cdot \frac{-1}{2} (1 - x^2)^{\frac{1}{2}} \cdot \frac{d}{dx} (1 - x^2)
\\
\\
y' =& \frac{1}{\sqrt{1 - x^2} \cdot \sqrt{x^2}} \cdot \frac{1}{2} (1 - x^2)^{\frac{-1}{2}} \cdot (-2x)
\\
\\
y' =& \frac{1}{(1 - x^2)^{\frac{1}{2}} \cancel{(x)}} \cdot \frac{- \cancel{2} \cancel{(x)}}{\cancel{2} (1 - x^2)^{\frac{1}{2}}}\
\\
\\
y' =& \frac{-1}{1 - x^2}
\\
\\
& \text{or}
\\
\\
y' =& \frac{1}{x^2 - 1}
\end{aligned}
\end{equation}
$
Comments
Post a Comment