Calculus of a Single Variable, Chapter 6, 6.3, Section 6.3, Problem 18

The problem: 2xy'-ln(x^2)=0 is as first order ordinary differential equation that we can evaluate by applying variable separable differential equation:
N(y)y'=M(x)
N(y)(dy)/(dx)=M(x)
N(y) dy=M(x) dx
Apply direct integration: intN(y) dy= int M(x) dx to solve for the
general solution of a differential equation.
Then, 2xy'-ln(x^2)=0 will be rearrange in to 2xy'= ln(x^2)
Let y' = (dy)/(dx) , we get: 2x(dy)/(dx)= ln(x^2)
or2x(dy)= ln(x^2)(dx)
Divide both sides by x to express in a form of N(y) dy=M(x) dx :
(2xdy)/x= (ln(x^2)dx)/x
2dy= (ln(x^2)dx)/x
Applying direct integration, we will have:
int 2dy= int (ln(x^2)dx)/x
For the left side, recall int dy = y then int 2dy = 2y
For the right side, we let u =x^2 then du =2x dx or dx=(du)/(2x) .
int (ln(x^2))/xdx=int (ln(u))/x*(du)/(2x)
=int (ln(u)du)/(2x^2)
=int (ln(u)du)/(2u)
=1/2 int ln(u)/u du

Let v=ln(u) then dv = 1/udu ,we get:
1/2 int ln(u)/u du=1/2 int v* dv
Applying the Power Rule of integration: int x^n dx = x^(n+1)/(n+1)+C
1/2 int v* dv= 1/2 v^(1+1)/(1+1)+C
= 1/2*v^2/2+C
=1/4v^2+C
Recall v = ln(u) and u = x^2 then v =ln(x^2) .
The integral will be:
int (ln(x^2))/xdx=1/4(ln(x^2))^2 +C or(ln(x^2))^2 /4+C
Combing the results from both sides, we get the general solution of the differential equation as:
2y = (ln(x^2))^2 /4+C
or y =(ln(x^2))^2 /8+C

To solve for the arbitary constant (C), we consider the initial condition y(1)=2
When we plug-in the values, we get:
2 =(ln(1^2))^2 /8+C
2 =0/8+C
2=0+C
then C=2
.Plug-in C=2 on the general solution: y =(ln(x^2))^2 /8+C , we get the
particular solution as:
y =(ln(x^2))^2 /8+2

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?