College Algebra, Chapter 8, 8.1, Section 8.1, Problem 56

Suppose that a telescope has $200$-in mirror that is constructed in a parabolic shape that collects light from the stars and focuses it at the prime focus, that is, the focus of the parabola. The mirror is $3.79$-in deep at its center. Determine the distance from the vertex to the focus.



If we let the vertex of the parabola lies on the origin and halfway between $200$-in. Then its equation is $x^2 = 4py$ where the focus is located at $(0, p)$ and endpoints at $(100, 3.79)$ and $(-100, 3.79)$. Hence, the endpoints are the solution of the equation, so..


$
\begin{equation}
\begin{aligned}

x^2 =& 4py
\\
\\
(100)^2 =& 4p(3.79)
\\
\\
p =& 659.6306 \text{-in}

\end{aligned}
\end{equation}
$


It shows that the distance from the vertex to the focus is approximately $660$ inches.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?