College Algebra, Chapter 7, 7.3, Section 7.3, Problem 22

Determine the inverse of the matrix $\left[ \begin{array}{ccc}
3 & -2 & 0 \\
5 & 1 & 1 \\
2 & -2 & 0
\end{array} \right]$ if it exists.

First, let's add the identity matrix to the right of our matrix

$\left[ \begin{array}{ccc|ccc}
3 & -2 & 0 & 1 & 0 & 0 \\
5 & 1 & 1 & 0 & 1 & 0 \\
2 & -2 & 0 & 0 & 0 & 1
\end{array} \right]$

By using Gauss-Jordan Elimination

$\displaystyle \frac{1}{3} R_1 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
5 & 1 & 1 & 0 & 1 & 0 \\
2 & -2 & 0 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_2 - 5R_1 \to R_2 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & \displaystyle \frac{13}{3} & 1 & \displaystyle \frac{-5}{3} & 1 & 0 \\
2 & -2 & 0 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_3 - 2 R_1 \to R_3 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & \displaystyle \frac{13}{3} & 1 & \displaystyle \frac{-5}{3} & 1 & 0 \\
0 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{-2}{3} & 0 & 1
\end{array} \right]$


$\displaystyle \frac{3}{13} R_2 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{-5}{13} & \displaystyle \frac{3}{13} & 0 \\
0 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{-2}{3} & 0 & 1
\end{array} \right]$


$\displaystyle R_3 + \frac{2}{3} R_2 \to R_3 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{-5}{13} & \displaystyle \frac{3}{13} & 0 \\
0 & 0 & \displaystyle \frac{2}{13} & \displaystyle \frac{-12}{13} & \displaystyle \frac{2}{13} & 1
\end{array} \right]$

$\displaystyle \frac{13}{2} R_3 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{-5}{13} & \displaystyle \frac{3}{13} & 0 \\
0 & 0 & 1 & -6 & 1 & \displaystyle \frac{13}{2}
\end{array} \right]$

$\displaystyle R_2 - \frac{3}{13} R_3 \to R_2 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & \displaystyle \frac{-3}{2} \\
0 & 0 & 1 & -6 & 1 & \displaystyle \frac{13}{2}
\end{array} \right]$

$\displaystyle R_1 + \frac{2}{3} R_2 \to R_1 $

$\left[ \begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & 0 & \displaystyle \frac{-3}{2} \\
0 & 0 & 1 & -6 & 1 & \displaystyle \frac{13}{2}
\end{array} \right]$


The inverse matrix can now be found in the right half of our reduced row-echelon matrix. So the inverse matrix is

$\left[ \begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & \displaystyle \frac{-3}{2} \\
-6 & 1 & \displaystyle \frac{13}{2}
\end{array} \right]$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?