College Algebra, Chapter 7, 7.3, Section 7.3, Problem 22

Determine the inverse of the matrix $\left[ \begin{array}{ccc}
3 & -2 & 0 \\
5 & 1 & 1 \\
2 & -2 & 0
\end{array} \right]$ if it exists.

First, let's add the identity matrix to the right of our matrix

$\left[ \begin{array}{ccc|ccc}
3 & -2 & 0 & 1 & 0 & 0 \\
5 & 1 & 1 & 0 & 1 & 0 \\
2 & -2 & 0 & 0 & 0 & 1
\end{array} \right]$

By using Gauss-Jordan Elimination

$\displaystyle \frac{1}{3} R_1 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
5 & 1 & 1 & 0 & 1 & 0 \\
2 & -2 & 0 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_2 - 5R_1 \to R_2 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & \displaystyle \frac{13}{3} & 1 & \displaystyle \frac{-5}{3} & 1 & 0 \\
2 & -2 & 0 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_3 - 2 R_1 \to R_3 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & \displaystyle \frac{13}{3} & 1 & \displaystyle \frac{-5}{3} & 1 & 0 \\
0 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{-2}{3} & 0 & 1
\end{array} \right]$


$\displaystyle \frac{3}{13} R_2 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{-5}{13} & \displaystyle \frac{3}{13} & 0 \\
0 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{-2}{3} & 0 & 1
\end{array} \right]$


$\displaystyle R_3 + \frac{2}{3} R_2 \to R_3 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{-5}{13} & \displaystyle \frac{3}{13} & 0 \\
0 & 0 & \displaystyle \frac{2}{13} & \displaystyle \frac{-12}{13} & \displaystyle \frac{2}{13} & 1
\end{array} \right]$

$\displaystyle \frac{13}{2} R_3 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{-5}{13} & \displaystyle \frac{3}{13} & 0 \\
0 & 0 & 1 & -6 & 1 & \displaystyle \frac{13}{2}
\end{array} \right]$

$\displaystyle R_2 - \frac{3}{13} R_3 \to R_2 $

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{-2}{3} & 0 & \displaystyle \frac{1}{3} & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & \displaystyle \frac{-3}{2} \\
0 & 0 & 1 & -6 & 1 & \displaystyle \frac{13}{2}
\end{array} \right]$

$\displaystyle R_1 + \frac{2}{3} R_2 \to R_1 $

$\left[ \begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & 0 & \displaystyle \frac{-3}{2} \\
0 & 0 & 1 & -6 & 1 & \displaystyle \frac{13}{2}
\end{array} \right]$


The inverse matrix can now be found in the right half of our reduced row-echelon matrix. So the inverse matrix is

$\left[ \begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & \displaystyle \frac{-3}{2} \\
-6 & 1 & \displaystyle \frac{13}{2}
\end{array} \right]$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?