Beginning Algebra With Applications, Chapter 7, 7.2, Section 7.2, Problem 90

Simplify $\displaystyle 5a^2 b (ab^2)^2 + b^3 (2a^2 b)^2$


$
\begin{equation}
\begin{aligned}

5a^2 b (ab^2)^2 + b^3 (2a^2 b)^2 =& 5a^2 b \left( a^2 b^4 \right) + b^3 (2)^2 \left( a^4 b^2 \right)
&& \text{Multiply each exponent in $ab^2$ and in $2a^2 b$ by the exponent outside the parentheses}
\\
\\
=& 5a^2 b \left( a^2 b^4 \right) + b^3 \left( 4a^4 b^2 \right)
&& \text{Simplify } (2)^2
\\
\\
=& 5 \left( a^2 \cdot a^2 \right) (b \cdot b^4) + 4 (a^4) \left( b^3 \cdot b^2 \right)
&& \text{Use Properties of Multiplication to rearrange and group factors}
\\
\\
=& 5a^4 b^5 + 4a^4 b^5
&& \text{Multiply variables with the same base by adding the exponents}
\\
\\
=& 9a^4 b^5
&&

\end{aligned}
\end{equation}
$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?