Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 84

If $f''(x) = 3e^x + 5 \sin x, f(0) = 1$ and $f'(0) = 2$, find $f(x)$.


$
\begin{equation}
\begin{aligned}

\text{if } f''(x) =& 3e^x + 5 \sin x, \text{ then}
\\
\\
f'(x) =& \int (3e^x + 5 \sin x) dx
\\
\\
f'(x) =& \int 3e^x dx + \int 5 \sin x dx
\\
\\
f'(x) =& 3e^x - 5 \cos x + C_1

\end{aligned}
\end{equation}
$


when $f'(0) = 2$


$
\begin{equation}
\begin{aligned}

2 =& 3e^0 - 5 \cos (0) + C_1
\\
\\
2 =& 3 - 5(1) + C_1
\\
\\
C_1 =& 4

\end{aligned}
\end{equation}
$


Thus,

$f'(x) = 3e^x - 5 \cos x + 4$

Again, by applying integration,


$
\begin{equation}
\begin{aligned}

f(x) =& \int (3e^x - 5 \cos x + 4) dx
\\
\\
f(x) =& \int 3e^x dx - \int 5 \cos x dx + \int 4 dx
\\
\\
f(x) =& 3e^x - 5 \sin x + 4x + C_2

\end{aligned}
\end{equation}
$


when $f(0) = 1$,


$
\begin{equation}
\begin{aligned}

1 =& 3 e^0 - 5 \sin (0) + 4(0) + C_2
\\
\\
1 =& 3 + C_2
\\
\\
C_2 =& -2

\end{aligned}
\end{equation}
$


Thus,

$f(x) = 3 e^x - 5 \sin x + 4 x - 2$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?