Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 22

Solve the system of equations $
\begin{equation}
\begin{aligned}

2x + 3y - 4z =& 4 \\
x - 6y + z =& -16 \\
-x + 3z =& 8

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

4x + 6y - 8z =& 8
&& 2 \times \text{Equation 1}
\\
x - 6y + z =& -16
&& \text{Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5x \phantom{-6y} -7z =& -8
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5x - 7z =& -8
&& \text{Equation 4}
\\
-x + 3z =& 8
&& \text{Equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5x - 7z =& -8
&&
\\
-5x + 15z =& 40
&& 5 \times \text{ Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{-5x + } 8z =& 32
&& \text{Add}
\\
z =& 4
&& \text{Divide each side by $8$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-x + 3(4) =& 8
&& \text{Substitute } z = 4 \text{ in Equation 3}
\\
-x + 12 =& 8
&& \text{Multiply}
\\
-x =& -4
&& \text{Subtract each side by $12$}
\\
x =& 4
&& \text{Divide each side by $-1$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2(4) + 3y - 4(4) =& 4
&& \text{Substitute } x = 4 \text{ and } z = 4 \text{ in Equation 1}
\\
8 + 3y - 16 =& 4
&& \text{Multiply}
\\
3y - 8 =& 4
&& \text{Combine like terms}
\\
3y =& 12
&& \text{Add each side by $8$}
\\
y =& 4
&& \text{Divide each side by $3$}

\end{aligned}
\end{equation}
$



The ordered triple is $\displaystyle \left( 4,4,4 \right)$.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?