Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 4

Check by differentiation $\displaystyle\frac{x}{\sqrt{a+bx}} dx = \frac{2}{3b^2} (bx - 2a) \sqrt{a + bx} + C$
We take the derivative of the expression to the right integral

$
\begin{equation}
\begin{aligned}
f(x) &=\frac{2}{3b^2} (bx - 2a) \sqrt{a+bx} + C \\
\\
f(x) &= \left( \frac{3bx}{3b^2} - \frac{4a}{3b^2} \right) \sqrt{a+bx} + C\\
\\
f(x) &= \left( \frac{2x}{3b} - \frac{4a}{3b^2} \right) (a + bx)^{\frac{1}{2}} + C \\
\\
f'(x) &= \left[ \left( \frac{2x}{3b} - \frac{4a}{3b^2} \right) \frac{d}{dx} (a + bx)^{\frac{1}{2}} + (a + bx)^{\frac{1}{2}} \frac{d}{dx} \left( \frac{2x}{3b} - \frac{4a}{3b^2} \right) \right] + \frac{d}{dx} C\\
\\
f'(x) &= \left( \frac{2x}{3b} - \frac{4a}{3b^2} \right) \left( \frac{1}{2} \right) (a + bx)^{\frac{-1}{2}} \frac{d}{dx} ( a + bx) + (a + bx)^{\frac{1}{2}} \left( \frac{2}{3b} - 0 \right) + 0 \\
\\
f'(x) &= \left( \frac{2x}{3b} - \frac{4a}{3b^2} \right) \left( \frac{1}{2} \right) (a + bx)^{\frac{-1}{2}} (b)+ (a+bx)^{\frac{1}{2}} \left( \frac{2}{3b} \right)\\
\\
f'(x) &= \frac{\left(\frac{2x}{3b} - \frac{4a}{3b^2} \right)\left( \frac{b}{2} \right)}{(a+bx)^{\frac{1}{2}}} + (a + bx)^{\frac{1}{2}} \left( \frac{2}{3b} \right)\\
\\
f'(x) &= \frac{\frac{2 \cancel{b}x}{6\cancel{b}} - \frac{4ab}{3b^2} }{(a + bx)^{\frac{1}{2}}} + (a + bx)^{\frac{1}{2}} \left( \frac{2}{3b} \right) \\
\\
f'(x) &= \frac{\frac{x}{3} - \cancel{\frac{2a}{3b}} + \cancel{\frac{2a}{3b}} + \frac{2 \cancel{b}x}{3 \cancel{b}} }{(a + bx)^{\frac{1}{2}}}\\
\\
f'(x) &= \frac{\frac{x}{3}+\frac{2x}{3} }{(a+bx)^{\frac{1}{2}}}\\
\\
f'(x) &= \frac{\frac{x+2x}{3}}{(a+bx)^{\frac{1}{2}}}\\
\\
f'(x) &= \frac{\frac{\cancel{3}x}{\cancel{3}}}{(a+bx)^{\frac{1}{2}}}\\
\\
f'(x) &= \frac{x}{(a+bx)^{\frac{1}{2}}} \qquad \text{ or } \qquad f'(x) = \frac{x}{\sqrt{a+bx}}
\end{aligned}
\end{equation}
$


The expression to the left is correct

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?