10^(3x-8)=2^(5-x) Solve the equation.

To solve the equation: 10^(3x-8)=2^(5-x) , we may take "ln" on both sides.
ln(10^(3x-8))=ln(2^(5-x))
Apply natural logarithm property: ln(x^n) = n*ln(x) .
(3x-8)ln(10)=(5-x)ln(2)
Let 10=2*5 .
(3x-8)ln(2*5)=(5-x)ln(2)
Apply natural logarithm property: ln(x*y) = ln(x)+ln(y) .
(3x-8)(ln(2) +ln(5))=(5-x)ln(2)
Distribute to expand each side.
3xln(2) +3xln(5)-8ln(2) -8ln(5)=5ln(2)-xln(2)
Isolate all terms with x's on one side.
3xln(2) +3xln(5)-8ln(2) -8ln(5) =5ln(2)-xln(2)
                                  +8ln(2) +8ln(5)     +8ln(2)         +8ln(5)  
------------------------------------------------------------------------------------------
3xln(2)+3xln(5)+0 +0 =13ln(2)-xln(2) +8ln(5)
 
3xln(2)+3xln(5) =13ln(2)-xln(2) +8ln(5)
+xln(2)                       +xln(2)
--------------------------------------------------------------------------
4xln(2) +3xln(5) =13ln(2)-0+8ln(5)
4xln(2) +3xln(5) =13ln(2)+8ln(5)
Factor out common factor x on the left side.
 
x(4ln(2) +3ln(5)) =13ln(2)+8ln(5)
Divide both sides by (4ln(2) +3ln(5)) .
(x(4ln(2) +3ln(5)))/(4ln(2) +3ln(5)) =(13ln(2)+8ln(5))/(4ln(2) +3ln(5))
x=(13ln(2)+8ln(5))/(4ln(2) +3ln(5))
Apply natural logarithm property: n*ln(x)=ln(x^n)
x=(ln(2^(13))+ln(5^8))/(ln(2^4) +ln(5^3))
x=(ln(8192)+ln(390625))/(ln(16) +ln(125))
Apply natural logarithm property: ln(x)+ln(y)=ln(x*y) .
x=(ln(8192*390625))/(ln(16*125))
x=(ln(3200000000))/(ln(2000))
or
x~~2.879

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?