Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 23

a.) Suppose that $\displaystyle F(x) = \frac{5x}{ 1 + x^2}$, find $F'(2)$ and use it to find an equation of the tangent line to the curve $\displaystyle y = \frac{5x}{1 + x^2}$ at the point $(2,2)$

Using the definition of the derivative of a function $F$ at a number $a$, denoted by $F'(a)$, is

$\qquad \displaystyle \qquad F'(a) = \lim_{h \to 0} \frac{F(a + h) - F(a)}{h}$

We have,


$
\begin{equation}
\begin{aligned}

\qquad F'(a) =& \lim \limits_{h \to 0} \frac{\displaystyle \frac{5(a + h)}{1 + (a + h)^2} - \frac{5a}{1+ a^2}}{h}
&& \text{Substitute $F'(a + h)$ and $F(a)$}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{(5a + 5h)(1 + a^2)- 5 a[1 + (a + h)^2]}{(h)(1 + a^2)[1 + (a + h)^2]}
&& \text{Get the LCD of the numerator}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{5a + 5a^3 + 5h + 5a^2 h - 5a (a^2 + 2ah + h^2 + 1)}{(h)(1 + a^2)[1 + (a + h)^2]}
&& \text{Expand the equation}
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{\cancel{5a} + \cancel{5a^3} + 5h + 5a^2 h - \cancel{5a} - \cancel{5a^3} - 10a^2 h - 5ah^2}{(h)(1 + a^2)[1 + (a + h)^2]}
&& \text{Combine like terms and simplify}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{5h - 5a^2 h - 5ah^2}{(h)(1 + a^2)[1 + (a+ h)^2]}
&& \text{Factor the numerator}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{\cancel{h}(5 - 5a^2 - 5ah)}{\cancel{(h)}(1 + a^2)[1 + (a + h)^2]}
&& \text{Cancel out like terms}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{5 - 5a^2 - 5ah}{(1 + a^2)[1 + (a + h)^2]} = \frac{5 - 5a^2 - 5a(0)}{1 + (a + 0)^2}
&& \text{Evaluate the limit}\\
\\
\qquad F'(a) =& \frac{5 - 5a^2}{(1 + a^2)^2}
&& \text{Substitute the value of $(a)$}\\
\\
\qquad F'(2) =& \frac{5 - 5(2)^2}{(1 + (2)^2)^2}
&& \text{Simplify}

\end{aligned}
\end{equation}
$



$\qquad \fbox{$F'(2) \displaystyle = \frac{-15}{25} = \frac{-3}{5}$} \qquad$
Slope of the tangent line at $(2,2)$

Using Point Slope Form where the tangent line $y = F(x)$ at $(a, F(a))$


$
\begin{equation}
\begin{aligned}

y - F(a) =& F'(a) (x -a)\\
&& \\
\\

y =& \frac{-3x + 6}{5} + 2
&& \text{Substitute the value of $a, F(a)$ and $F'(a)$}\\
\\

y =& \frac{-3x + 6 + 10}{5}
&& \text{Combine like terms}


\end{aligned}
\end{equation}
$


$\qquad \fbox{$ y = \displaystyle \frac{ -3x + 16}{5}$} \qquad$ Equation of the tangent line at $(2,2)$

b.) Draw a graph of the curve and the tangent line on the same screen.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?