int 5x/(e^(2x)) dx Find the indefinite integral

Recall that indefinite integral follows int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration.
 For the given  integral problem: int5 x/e^(2x) dx , we may  apply Law of exponent: 1/x^n =x^(-n) then 1/e^(2x) = e^(-2x) .
 int5 x/e^(2x) dx =int5 x*e^(-2x) dx
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int5 x*e^(-2x) dx= 5int x*e^(-2x) dx
Apply integration by parts: int f *g' = f*g - int g *f'du .
Let :   f =x then f' = dx
          g'=e^(-2x) dx then g = -1/2e^(-2x)
Note:  g = int g'= int e^(-2x) dx . Apply u-substitution using u =-2x then du = -2dx or (du)/(-2) =dx .
int e^(-2x) dx =int e^(u) * (du)/(-2)
                      = -1/2 int e^u du
                      = -1/2 e^u
Plug-in u =-2x on -1/2 e^u , we get:   int e^(-2x) dx =-1/2 e^(-2x) .
 
Following the formula for integration by parts, we set it up as:
5int x*e^(-2x) dx =5[ x*(-1/2 e^(-2x)) - int (-1/2 e^(-2x)) dx]
                             =5[ x*(-1/2 e^(-2x)) - (-1/2) int ( e^(-2x)) dx]
                             =(-5xe^(-2x))/2 + 5/2int ( e^(-2x)) dx
Plug-in int e^(-2x) dx =-1/2 e^(-2x) , we get:
5int x*e^(-2x) dx=(-5xe^(-2x))/2 + 5/2int ( e^(-2x)) dx
                              =(-5xe^(-2x))/2 + 5/2*[-1/2 e^(-2x)] +C
                              =(-5xe^(-2x))/2 - (5 e^(-2x))/4 +C
                            or   (-5x)/(2e^(2x)) - 5/(4 e^(2x)) +C

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?