Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 22

To evaluate the integral int tan^6(3x) dx , we apply u-substitution by letting:
u =3x then du = 3 dx or (du)/3 = dx .
Plug-in the values, we get:
int tan^6(3x) dx =int tan^6(u) * (du)/3
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int tan^6(u) * (du)/3= 1/3int tan^6(u) du
Apply integration formula for tangent function: int tan^n(x)dx = (tan^(n-1)(x))/(n-1)- int tan^(n-2)(x)dx .
1/3int tan^6(u) du =1/3 *[(tan^(6-1)(u))/(6-1)- int tan^(6-2)(u)du]
=1/3*[(tan^(5)(u))/(5)- int tan^(4)(u)du]
Apply another set integration formula for tangent function on int tan^(4)(u)du .
int tan^(4)(u)du =(tan^(4-1)(u))/(4-1)- int tan^(4-2)(u)du
=(tan^(3)(u))/(3)- int tan^(2)(u)du
For the integral of int tan^(2)(u)du , we may apply integration formula: int tan^2(x) dx = tan(x)-x+C .
int tan^(2)(u)du =tan(u)-u +C

Applying int tan^(2)(u)du =tan(u)-u +C , we get:
int tan^(4)(u)du =(tan^(3)(u))/(3)- int tan^(2)(u)du
=(tan^(3)(u))/(3)- [tan(u)-u] +C
=(tan^(3)(u))/(3)- tan(u)+u +C
Applying int tan^(4)(u)du=(tan^(3)(u))/(3)- tan(u)+u +C . we get:
1/3int tan^6(u) du=1/3*[(tan^(5)(u))/(5)- int tan^(4)(u)du]
=1/3*[(tan^(5)(u))/(5)- [(tan^(3)(u))/(3)- tan(u)+u]] +C
=1/3*[(tan^(5)(u))/(5)- (tan^(3)(u))/(3)+ tan(u)-u] +C
= (tan^(5)(u))/15- (tan^(3)(u))/9+ tan(u)/3-u/3 +C
Plug-in u = 3x on (tan^(5)(u))/15- (tan^(3)(u))/9+ tan(u)/3-u/3 +C ,we get the indefinite integral as:
int tan^6(3x) dx=(tan^(5)(3x))/15-( tan^(3)(3x))/9+ tan(3x)/3-(3x)/3 +C
=(tan^(5)(3x))/15-( tan^(3)(3x))/9+ tan(3x)/3-x +C

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?