College Algebra, Chapter 7, 7.4, Section 7.4, Problem 42

Solve the system $\left\{ \begin{array}{ccccc}
-2a & & + c & = & 2 \\
a & + 2b & -c & = & 9 \\
3a & + 5b & +2c & = & 22
\end{array} \right.$ using Cramer's Rule.

For this system we have


$
\begin{equation}
\begin{aligned}

|D| =& \left| \begin{array}{ccc}
-2 & 0 & 1 \\
1 & 2 & -1 \\
3 & 5 & 2
\end{array} \right| = -2 \left[ 2 \cdot 2 - (-1) \cdot 5 \right] + 1 \left( 1 \cdot 5 - 2 \cdot 3 \right)
= -19
\\
\\
|D_a| =& \left| \begin{array}{ccc}
2 & 0 & 1 \\
9 & 2 & -1 \\
22 & 5 & 2
\end{array} \right| = 2 \left[ 2 \cdot 2 - (-1) \cdot 5 \right] + 1 \left( 9 \cdot 5 - 2 \cdot 22 \right)
= 19
\\
\\
|D_b| =& \left| \begin{array}{ccc}
-2 & 2 & 1 \\
1 & 9 & -1 \\
3 & 22 & 2
\end{array} \right| = -2 \left[ 9 \cdot 2 - (-1) \cdot 22 \right] - 2 \left[ 1 \cdot 2 - (-1) \cdot 3 \right] + 1 \left( 1 \cdot 22 - 9 \cdot 3 \right)
= -95
\\
\\
|D_c| =& \left| \begin{array}{ccc}
-2 & 0 & 2 \\
1 & 2 & 9 \\
3 & 5 & 22
\end{array} \right| = -2 \left( 2 \cdot 22 - 9 \cdot 5 \right) + 2 \left( 1 \cdot 5 - 2 \cdot 3 \right)
= 0

\end{aligned}
\end{equation}
$


The solution is


$
\begin{equation}
\begin{aligned}

a =& \frac{|D_a|}{|D|} = \frac{19}{-19} = -1
\\
\\
b =& \frac{|D_b|}{|D|} = \frac{-95}{-19} = 5
\\
\\
c =& \frac{|D_c|}{|D|} = \frac{0}{-19} = 0
\end{aligned}
\end{equation}
$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?