Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 34

Determine $y''$ of $\sqrt{x} + \sqrt{y} = 1$ by using implicit differentiation.

Solving for 1st Derivative


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (\sqrt{x}) + \frac{d}{dx} (\sqrt{y}) =& \frac{d}{dx} (1)
\\
\\
\frac{d}{dx} (x)^{\frac{1}{2}} + \frac{d}{dx} (y)^{\frac{1}{2}} =& \frac{d}{dx} (1)
\\
\\
\frac{1}{2} (x)^{\frac{-1}{2}} + \frac{1}{2} (y)^{\frac{-1}{2}} \frac{d}{dx} =& 0
\\
\\
\frac{1}{2 (y)^{\frac{1}{2}}} \frac{dy}{dx} =& \frac{-1}{2(x)^{\frac{1}{2}}}
\\
\\
\frac{dy}{dx} =& - \frac{\cancel{2} (y)^{\frac{1}{2}}}{\cancel{2}(x)^{\frac{1}{2}}}
\\
\\
\frac{dy}{dx} =& - \frac{(y)^{\frac{1}{2}}}{(x)^{\frac{1}{2}}}

\end{aligned}
\end{equation}
$


Solving for 2nd Derivative


$
\begin{equation}
\begin{aligned}

\frac{d^2 y}{dx^2} =& - \frac{\displaystyle (x)^{\frac{1}{2}} \frac{d}{dx}(y)^{\frac{1}{2}} - (y)^{\frac{1}{2}} \frac{d}{dx} (x)^{\frac{1}{2}} }{[(x)^{\frac{1}{2}}]^2}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& - \frac{\displaystyle (x)^{\frac{1}{2}} \left( \frac{1}{2} \right) (y)^{\frac{-1}{2}} \frac{dy}{dx} - (y)^{ \frac{1}{2}} \left( \frac{1}{2} \right) (x)^{\frac{-1}{2}} }{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& - \frac{\displaystyle \frac{(x)^{\frac{1}{2}}}{2 (y)^{\frac{1}{2}}} \frac{dy}{dx} - \frac{(y)^{\frac{1}{2}}}{2(x)^{\frac{1}{2}}} }{x}
\qquad \qquad \text{We know that $\large \frac{dy}{dx} = - \frac{(y)^{\frac{1}{2}}}{(x)^{\frac{1}{2}}}$}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& - \frac{\displaystyle \left[ \frac{\cancel{(x)^{\frac{1}{2}}}}{2 \cancel{(y)^{\frac{1}{2}}}} \right] \left[ - \frac{\cancel{(y)^{\frac{1}{2}}}}{\cancel{(x)^{\frac{1}{2}}}} \right] - \frac{(y)^{\frac{1}{2}}}{2(x)^{\frac{1}{2}}} }{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& - \frac{\displaystyle \left( \frac{-1}{2} \right) - \frac{(y)^{\frac{1}{2}}}{2 (x)^{\frac{1}{2}}}}{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{\displaystyle \frac{1}{2} - \frac{(y)^{\frac{1}{2}}}{2(x)^{\frac{1}{2}}}}{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{\displaystyle \frac{1}{2} + \frac{(y)^{\frac{1}{2}}}{2 (x)^{\frac{1}{2}}}}{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{\displaystyle \frac{(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}}}{2(x)^{\frac{1}{2}}}}{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}} }{2x (x)^{\frac{1}{2}}}
\qquad \qquad \text{We know that $\sqrt{x} + \sqrt{y} = 1$ or $(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}} = 1$}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{1}{2x \sqrt{x}} \text{ or } y'' = \frac{1}{2x \sqrt{x}}


\end{aligned}
\end{equation}
$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?