Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 40
We need to find the function $f \circ g \circ h$
$\displaystyle f(x) = \tan x , \qquad \quad g(x) = \frac{x}{x-1},\qquad \quad h(x) = \sqrt[3]{x}$
$
\begin{equation}
\begin{aligned}
f \circ g \circ h =& f(g(h(x)))\\
\text{ Solving for $g \circ h$}\\
\displaystyle g(h(x))=& \frac{x}{x-1}\\
g(\sqrt[3]{x})=& \frac{x}{x-1}
&& \text{ Substitute the given function $h(x)$ to the value of $x$ of the function $g(x)$}\\
\displaystyle g \circ h =& \frac{\sqrt[3]{x}}{\sqrt[3]{x} -1}\\
\text{ Solving for $f \circ g \circ h$}\\
\displaystyle g(x)=& \frac{\sqrt[3]{x}}{\sqrt[3]{x} - 1}\\
f \circ g \circ h =& f(g(h(x)))\\
f(\frac{\sqrt[3]{x}}{\sqrt[3]{x} - 1})=& \tan x
&& \text{ Substitute the value of $x$ }\\
\end{aligned}
\end{equation}
$
$\displaystyle \boxed{ f \circ g \circ h = \tan \left( \frac{\sqrt[3]{x}}{\sqrt[3]{x} - 1} \right)}$
Comments
Post a Comment