Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 27

Find an equation of the tangent to the curve $x^2+y^2 = (2x^2+2y62-x)^2$ at the point $\displaystyle \left(0,\frac{1}{2}\right)$ using Implicit Differentiation.
If $y'= m\text{ (slope)}$ then,
$\displaystyle \frac{d}{dx} + (x^2) \frac{d}{dx} (y^2) = \frac{d}{dx} (2x^2 + 2y^2 - x)^2$


$
\begin{equation}
\begin{aligned}
2x + 2y \frac{dy}{dx} & = 2 (2x^2+2y^2-x) \frac{d}{dx}(2x^2+2y^2-x)\\
\\
2x + 2y \frac{dy}{dx} & = 2 (2x^2+2y^2-x) \left[ 2 \frac{d}{dx} (x^2) + 2 \frac{d}{dx} (y^2) - \frac{d}{dx} (x) \right]\\
\\
2x + 2y \frac{dy}{dx} & = 2 (2x^2 + 2y^2 - x) \left[ (2)(2x) + (2)(2y) \frac{dy}{dx} - 1\right]\\
\\
2x + 2y \frac{dy}{dx} & = (4x^2 + 4y^2 - 2x) \left(4x +4y \frac{dy}{dx} -1 \right)\\
\\
2x + 2y \frac{dy}{dx} & = 16x^3+16x^2y \frac{dy}{dx} - 4x^2 +16xy^2 + 16y^3 \frac{dy}{dx} - 4y^2 - 8x^2 - 8xy \frac{dy}{dx} + 2x
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
2y \frac{dy}{dx} - 16x^2y \frac{dy}{dx} - 16y^3 \frac{dy}{dx} + 8xy \frac{dy}{dx} &= 16x^3 - 4x^2 + 16xy^2 - 4y^2 - 8x^2 + \cancel{2x} - \cancel{2x}\\
\\
\frac{dy}{dx} ( 2y - 16x^2y - 16y^3 + 8xy) &= 16x^3 - 4x^2 + 16xy^2 - 4y^2 - 8x^2\\
\\
\frac{\frac{dy}{dx} \cancel{( 2y - 16x^2y - 16y^3 + 8xy)} }{\cancel{ 2y - 16x^2y - 16y^3 + 8xy}} &= \frac{ 16x^3 - 4x^2 + 16xy^2 - 4y^2 - 8x^2}{2y - 16x^2y - 16y^3 + 8xy}
\end{aligned}
\end{equation}
$


$\displaystyle \frac{dy}{dx} = \frac{ 16x^3 - 4x^2 + 16xy^2 - 4y^2 - 8x^2}{2y - 16x^2y - 16y^3 + 8xy} \qquad \text{ or } \qquad y' = \frac{ 16x^3 - 4x^2 + 16xy^2 - 4y^2 - 8x^2}{2y - 16x^2y - 16y^3 + 8xy} $

For $x= 0 $ and $\displaystyle y = \frac{1}{2}$, we obtain

$
\begin{equation}
\begin{aligned}
y' = m &= \frac{16(0)^3 - 4(0)^2 + 16(0)\left( \frac{1}{2}\right)^2 - 4 \left( \frac{1}{2} \right)^2 - 8 (0)^2}{2 \left( \frac{1}{2} \right) - 16 (0)^2 \left( \frac{1}{2} \right) - 16 \left( \frac{1}{2} \right)^3 + 8(0) \left( \frac{1}{2} \right)}\\
\\
m &= \frac{0-0+0-1-0}{1-0-2+0}\\
\\
m &= \frac{-1}{-1}\\
\\
m &= 1
\end{aligned}
\end{equation}
$

Using point slope form

$
\begin{equation}
\begin{aligned}
y - y_1 & = m (x-x_1)\\
\\
y - \frac{1}{2} & = 1 (x - 0)\\
\\
y - \frac{1}{2} &= x\\
\\
y & = x + \frac{1}{2} && \text{Equation of tangent line at } \left(0, \frac{1}{2} \right)
\end{aligned}
\end{equation}
$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?