Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 12

Solve the system of equations $
\begin{equation}
\begin{aligned}

2x + y + 2z =& 1 \\
x + 2y + z =& 2 \\
x - y - z =& 0

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

2x + y + 2z =& 1
&& \text{Equation 1}
\\
2x - 2y - 2z =& 0
&& 2 \times \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

4x - y \phantom{-2z} =& 1
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

x + 2y + z =& 2
&& \text{Equation 2}
\\
x - y - z =& 0
&& \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2x + y \phantom{-z} =& 2
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

4x - y =& 1
&& \text{Equation 4}
\\
2x + y =& 2
&& \text{Equation 5}

\end{aligned}
\end{equation}
$


We write the equations in two variables as a system


$
\begin{equation}
\begin{aligned}

4x - y =& 1
&&
\\
2x + y =& 2
&&
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

6x \phantom{+y} =& 3
&& \text{Add}
\\
x =& \frac{1}{2}
&& \text{Divide each side by $6$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2 \left( \frac{1}{2} \right) + y =& 2
&& \text{Substitute } x = \frac{1}{2} \text{ in Equation 5}
\\
1 + y =& 2
&& \text{Multiply}
\\
y =& 1
&& \text{Subtract each side by $1$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2 \left( \frac{1}{2} \right) + 1 + 2z =& 1
&& \text{Substitute } x = \frac{1}{2} \text{ and } y = 1 \text{ in Equation 1}
\\
1 + 1 + 2z =& 1
&& \text{Multiply}
\\
2 + 2z =& 1
&& \text{Combine like terms}
\\
2z =& -1
&& \text{Subtract each side by $2$}
\\
z =& - \frac{1}{2}
&& \text{Divide each side by } 2

\end{aligned}
\end{equation}
$


The ordered triple is $\displaystyle \left( \frac{1}{2}, 1, - \frac{1}{2} \right)$.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?