x=4y^2 Graph the equation. Identify the focus, directrix, and axis of symmetry of the parabola.

One of the vertex form of the parabola is,
(y-k)^2=4p(x-h)   where (h,k) is the vertex and 
p is the distance between vertex and focus and also the same distance between the vertex and the directrix,
Given equation is x=4y^2
Graph of the equation is attached.
Rewrite the equation in the standard form,
y^2=1/4x
4p=1/4
=>p=1/16
(y-0)^2=4(1/16)(x-0)
Vertex is at (h,k) i.e (0,0)
Focus is at (h+p,k) i.e (1/16,0)
Axis of symmetry is the horizontal line passing through the vertex, i.e y=0
Directrix being perpendicular to the axis of symmetry is the vertical line,
Directrix is x=h-p
Directrix is x=0-1/16=-1/16
 

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?