Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 38
Determine the horizontal and vertical asymptotes of the curve $\displaystyle F(x) = \frac{x - 9}{\sqrt{4x^2 + 3x + 2}}$
Solving for the vertical asymptotes
We set the denominator equal to zero
$4x^2 + 3x + 2 = 0$
Using the discriminant of $ax^2 + bx + c$ which is $\Delta = b^2 - 4ac$.
(If $\Delta < 0$, then the equation $ax^2 + bx + c = 0$ has no real solution.)
$
\begin{equation}
\begin{aligned}
\Delta =& (3)^2 - 4 (4)(2)
\\
\\
\Delta =& 9 - 32
\\
\\
\Delta =& -23
\end{aligned}
\end{equation}
$
But $-23 < 0$
So $4x^2 + 3x + 2 = 0$ has no real solution.
Therefore,
$F(x)$ has no vertical asymptotes
Solving for the horizontal asymptotes
In the function $\displaystyle F(x) = \frac{x - 9}{\sqrt{4x^2 + 3x + 2}}$ we remove everything except the biggest exponents of $x$ found in the numerator an denominator.
So we have
$
\begin{equation}
\begin{aligned}
F(x) =& \frac{x}{\pm \sqrt{4x^2}} \qquad \text{where $F(x) = y$}
\\
\\
y =& \frac{\cancel{x}}{\pm 2 \cancel{x}}
\\
\\
y =& \pm \frac{1}{2}
\end{aligned}
\end{equation}
$
Thus, the horizontal asymptotes are $\displaystyle y = \frac{1}{2}$ and $\displaystyle y = \frac{-1}{2}$
Therefore,
The function $F(x)$ has no vertical asymptotes and have horizontal asymptote which is $\displaystyle y = \frac{1}{2}$ and $\displaystyle y = \frac{-1}{2}$
Comments
Post a Comment