College Algebra, Chapter 2, 2.2, Section 2.2, Problem 64

Find the equation of the circle shown in the figure.

*Refer to the figure in the book*

By observation, the center of the circle is at $(-1, 1)$ and it passes through point $(2, 0)$. Recall that the general equation for the circle with
circle $(h,k)$ and radius $r$ is..



$
\begin{equation}
\begin{aligned}

(x - h)^2 + (y - k)^2 =& r^2
&& \text{Model}
\\
\\
(x - (-1))^2 + (y - 1)^2 =& r^2
&& \text{Substitute the value of the center}
\\
\\
(x + 1)^2 + (y - 1)^2 =& r^2
&& \text{Simplify}

\end{aligned}
\end{equation}
$


Since the circle passes through the point $(2,0)$, we can say that the point is a solution for the equation.


$
\begin{equation}
\begin{aligned}

(2 + 1)^2 + (0 - 1)^2 =& r^2
\\
\\
(3)^2 + (-1)^2 =& r^2
\\
\\
9 + 1 =& r^2
\\
\\
10 =& r^2

\end{aligned}
\end{equation}
$


Thus, the equation of the circle is..

$(x + 1)^2 + (y - 1)^2 = 10$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?