Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 38
We need to find the function $f \circ g \circ h$
$f(x) = 2x-1, \qquad \quad g(x)=x^2, \qquad \quad h(x)=1-x$
$
\begin{equation}
\begin{aligned}
f \circ g \circ h =& f(g(h(x)))\\
\text{Solving for $g \circ h$}\\
g(h(x)) =& x^2\\
g( 1 - x) =& x^2
&& \text{ Substitute the given function $h(x)$ to the value of $x$ of the function $g(x)$}\\
g(1 - x) =& (1 -x)^2
&& \text{ Using FOIL method}\\
g \circ h =& 1 - 2x + x^2\\
\\
\text{ Solving for $f \circ g \circ h$}\\
g \circ h =& 1 - 2x + x^2\\
f(g(h(x))) =& 2x - 1\\
f (1 - 2x + x^2) =& 2x - 1
&& \text{ Substitute the value of $x$}\\
f(1 - 2x + x^2) =& 2(1 -2x + x^2) -1
&& \text{ Simplify the equation}\\
f(1 -2x + x^2) =& 2 - 4x + 2x^2 -1
&& \text{ Combine like terms}
\end{aligned}
\end{equation}
$
$\boxed{f \circ g \circ h = 1 - 4x + 2x^2}$
Comments
Post a Comment