Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 64

Determine the absolute maximum and absolute minimum values of $\displaystyle f(x) = x^2 e^{\frac{-x}{2}}$ on the interval $[-1,6]$

To determine the critical numbers, we set $f'(x) = 0$, so..


$
\begin{equation}
\begin{aligned}

\text{if } f(x) =& x^2 e^{\frac{-x}{2}} \text{ then by using Product Rule..}
\\
\\
f'(x) =& \left[ x^2 e^{\frac{-x}{2}} \left( \frac{-1}{2} \right) + 2x e^{\frac{-x}{2}} \right]
\\
\\
f'(x) =& xe^{\frac{-x}{2}} \left( 2 - \frac{x}{2} \right)

\end{aligned}
\end{equation}
$


When $f'(x) = 0$, then..

$\displaystyle 0 = x e^{\frac{-x}{2}} \left( 2 - \frac{x}{2} \right)$

We have,

$xe^{\frac{-x}{2}} = 0 $ and $ \displaystyle 2 - \frac{x}{2} = 0$

The real solution and the critical number is..


$
\begin{equation}
\begin{aligned}

2 - \frac{x}{2} =& 0
\\
\\
\frac{x}{2} =& 2
\\
\\
x =& 4

\end{aligned}
\end{equation}
$



So we have either a maximum or a minimum at $x = 4$, if we evaluate $f(x)$ with $x = 4$, the intervals $x = \pm 1$ and $x = 6$ and $x = 0$,

$
\begin{array}{ccc}
\text{when } x = 4, & & \text{when }x = -1, \\
f(4) = 4^2 (e^{\frac{-4}{2}}) & & f(-1) = (-1)^2 (e^{\frac{-4(-1)}{2}} ) \\
f(4) = 2.1654 & & f(-1) = 1.6487 \\
\text{when } x = 6,& & \text{when } x = 0,\\
f(6) = 6^2 (e^{\frac{-6}{2}}) & & f(0) = (0)^2 (e^{\frac{-0}{2}}) \\
f(6) = 1.7923 & & f(0) = 0
\end{array}
$

Therefore, the absolute maximum is $f(4) = 2.1654$ and the absolute minimum is $f(0) = 0$.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?