int 1/(xsqrt(9x^2+1)) dx Find the indefinite integral

Recall that indefinite integral follows the formula: int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
For the given problem int 1/(xsqrt(9x^2+1)) dx , it resembles one of the formula from integration table.  We may apply the integral formula for rational function with roots as:
int dx/(xsqrt(x^2+a^2))= -1/aln((a+sqrt(x^2+a^2))/x)+C .
 For easier comparison, we  apply u-substitution by letting:  u^2 =9x^2 or (3x)^2 then u = 3x or u/3 =x .
Note: The corresponding value of a^2=1 or 1^2 then a=1 .
For the derivative of u , we get: du = 3 dx or (du)/3= dx .
Plug-in the values on the integral problem, we get:
int 1/(xsqrt(9x^2+1)) dx =int 1/((u/3)sqrt(u^2+1)) *(du)/3
                         =int 3/(usqrt(u^2+1)) *(du)/3
                         =int (du)/(usqrt(u^2+1))
Applying the aforementioned integral formula where a^2=1 and a=1 , we get:
int (du)/(usqrt(u^2+1)) =-1/1ln((1+sqrt(u^2+1))/u)+C
                  =-ln((1+sqrt(u^2+1))/u)+C
                  =ln(((1+sqrt(u^2+1))/u)^-1) + C
                  =ln(u/(1+sqrt(u^2+1))) + C
Plug-in u^2 =9x^2  and u =3x and we get the indefinite integral as:
int 1/(xsqrt(9x^2+1)) dx=ln((3x)/(1+sqrt(9x^2+1)))+C

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?