Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 22

Suppose that $g(x) = 1 - x^3$, find $g'(0)$ and use it to find an equation of the tangent line to the curve $y = 1 - x^3$ at the point $(0, 2)$

Using the definition of the derivative of a function $g$ at a number $a$, denoted by $g'(a)$, is

$\qquad \displaystyle g'(a) = \lim \limits_{h \to 0} \frac{g(a + h ) - g(a)}{h}$

We have,


$
\begin{equation}
\begin{aligned}

\qquad g'(a) =& \lim \limits_{h \to 0} \frac{1 - (a + h)^3 - (1 - a^3)}{h}
&& \text{Substitute $g(a + h)$ and $g(a)$}\\
\\
\qquad g'(a) =& \lim \limits_{h \to 0} \frac{\cancel{1} - \cancel{a^3} - 3a^2 h - 3ah^2 - h^3 - \cancel{1} + \cancel{a^3}}{h}
&& \text{Expand and combine like terms}\\
\\
\qquad g'(a) =& \lim \limits_{h \to 0} \frac{-3a^2 h - 3ah^2 - h^3}{h}
&& \text{Factor the numerator}\\
\\
\qquad g'(a) =& \lim \limits_{h \to 0} \frac{\cancel{h} (-3a^2 - 3ah - h^2)}{\cancel{h}}
&& \text{Cancel out like terms}\\
\\
\qquad g'(a) =& \lim \limits_{h \to 0} (- 3a^2 - 3ah - h^2) = -3a^2 - 3a(0) - (0)^2
&& \text{Evaluate the limit}\\
\\
\qquad g'(a) =& -3a^2
&& \text{Substitute value of $(a)$} \\
\\
\qquad g'(0) =& -3 (0)^2
&& \text{Simplify}\\
\\

\end{aligned}
\end{equation}
$


$\qquad \boxed{g'(0) = 0} \qquad$ Slope of the tangent line at $(0,1)$

Using Point Slope Form wehre the tangent line $y = g(x)$ at $(a, g(a))$


$
\begin{equation}
\begin{aligned}
y - g(a) =& g'(a)(x - a)
&& \\
\\
y - 1 =& 0 (x - 0)
&& \text{Substitute value of $a, g(a)$ and $g'(a)$}\\
\\
y - 1 =& 0
&& \text{Simplify}

\end{aligned}
\end{equation}
$


$\qquad \quad \boxed{ y = 1} \qquad $ Equation of the tangent line at $(0,1)$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?