Calculus of a Single Variable, Chapter 5, 5.8, Section 5.8, Problem 8

coth^2(x) - csc h^2(x) =1
Take note that hyperbolic cotangent and hyperbolic cosecant are defined as
coth (x) = (e^x+e^(-x))/(e^x-e^(-x))
csc h^2(x) =2/(e^x - e^(-x))
Plugging them, the left side of the equation becomes
((e^x+e^(-x))/(e^x-e^(-x)))^2 -(2/(e^x - e^(-x)) )^2=1
(e^x+e^(-x))^2/(e^x-e^(-x))^2 -2^2/(e^x - e^(-x))^2=1
(e^x+e^(-x))^2/(e^x-e^(-x))^2 -4/(e^x - e^(-x))^2=1
((e^x+e^(-x))^2-4)/(e^x - e^(-x))^2=1
Then, simplify the numerator.
((e^x + e^(-x))(e^x + e^(-x)) - 4)/(e^x- e^(-x))^2=1
(e^(2x)+1+1+e^(-2x) - 4)/(e^x- e^(-x))^2=1
(e^(2x)+2+e^(-2x) - 4)/(e^x- e^(-x))^2=1
(e^(2x) - 2 +e^(-2x)) /(e^x- e^(-x))^2=1
Factoring the numerator, it becomes
((e^x - e^(-x))(e^x-e^(-x)))/(e^x- e^(-x))^2=1
(e^x - e^(-x))^2/(e^x- e^(-x))^2=1
Cancelling common factor, the right side simplifies to
1=1
This verifies that the given equation is an identity.

Therefore, coth^2(x) - csc h^2(x)=1 is an identity.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?