Calculus of a Single Variable, Chapter 6, 6.4, Section 6.4, Problem 20

Given y'+y*secx=secx
when the first order linear ordinary Differentian equation has the form of
y'+p(x)y=q(x)
then the general solution is ,
y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/ e^(int p(x) dx)
so,
y'+y*secx=secx--------(1)
y'+p(x)y=q(x)---------(2)
on comparing both we get,
p(x) = secx and q(x)=secx
so on solving with the above general solution we get:
y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)
=((int e^(int secx dx) *(secx)) dx +c)/e^(int secx dx)
first we shall solve
e^(int secx dx)=e^(ln(secx +tanx)) = secx+tanx
so
proceeding further, we get
y(x) =((int e^(int secx dx) *(secx)) dx +c)/e^(int secx dx)
=(int ((secx+tanx)*(secx)) dx +c)/(secx+tanx)
=(int ((sec^2x+tanx*(secx)) dx +c)/(secx+tanx)
=(int (sec^2x) dx+int (tanx*(secx)) dx +c)/(secx+tanx)
=(tanx+secx +c)/(secx+tanx)
so y(x)=(tanx+secx +c)/(secx+tanx)=1 +c/(secx+tanx)

Now we have to find the particular solution at y(0) =4
so y(x) =1 +c/(secx+tanx)
=> y(0) = 1+c/(sec(0)+tan(0)) =4
=> 1+c=4
c=3
so the particular solution is
y(x) = 1+ 3/(secx+tanx)

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?