int_0^(1/4) xln(x+1) dx Use a power series to approximate the value of the integral with an error of less than 0.0001.

From the basic list of power series, we have:
ln(x) =sum_(n=0)^oo (-1)^(n) (x-1)^(n+1)/(n+1)
         = (x-1)-(x-1)^2/2+(x-1)^3/3 -(x-1)^4/4 +...
We replace "x " with "x+1 " to setup:
ln(1+x) =sum_(n=0)^oo (-1)^n ((x+1)-1)^(n+1)/(n+1)
               =sum_(n=0)^oo (-1)^n x^(n+1)/(n+1)
               =x-x^2/2+x^3/3 -x^4/4+...
Note: ((x+1)-1) = (x+1-1) = x
Then,
x ln(1+x) =sum_(n=0)^oo (-1)^n x^(n+1)/(n+1) *x
                   =sum_(n=0)^oo (-1)^n x^(n+2)/(n+1)
 
Note: x^(n+1) * x = x^(n+1+1) =x^(n+2)
Applying the summation formula, we get:
x ln(1+x)= x*[x-x^2/2+x^3/3 -x^4/4+...]
                  or
                  = x^2 -x^3/2+x^4/3-x^5/4 +...
Then the integral becomes:
int_0^(1/4) xln(x+1) = int_0^(1/4) [x^2 -x^3/2+x^4/3-x^5/4 +...]dx
To determine the indefinite integral, we integrate each term using the Power Rule for integration: int x^n dx= x^(n+1)/(n+1) .
int_0^(1/4) [x^2 -x^3/2+x^4/3-x^5/4 +...]dx
= [x^3/3 -x^4/(2*4)+x^5/(3*5)-x^6/(4*6) +...]_0^(1/4)
= [x^3/3 -x^4/7+x^5/15-x^6/24 +...]_0^(1/4)
Apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
F(1/4) or F(0.25) =0.25^3/3 -0.25^4/7+0.25^5/15-0.25^6/24 +...
                                =1/192-1/1792+1/15360 -1/98304+...
F(0)=0^3/3 -0^4/7+0^5/15-0^6/24 +...
          = 0-0+0-0+...
All the terms are 0 then F(0) =0 .
We may stop at 4th term (1/98304~~0.00001017) since we only need an error less than 0.0001 .
F(1/4)-F(0) = [1/192-1/1792+1/15360 -1/98304]-[0]
                       = 0.00470522926
Thus, the approximated integral value:
int_0^(1/4) xln(x+1) dx ~~0.0047

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?