Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 44

Determine the horizontal asymptotes of the curve $\displaystyle y = \frac{1 + 2x^2}{1 + x^2}$ and use them together with concavity and intervals of increase and decrease, to sketch the curve.

$\displaystyle y = \frac{1 + 2x^2}{1 + x^2}$ has a domain $(- \infty, \infty)$

So there are no vertical asymptote

Solving for the horizontal asymptote

$\displaystyle \lim_{x \to \pm \infty} \frac{1 + 2x^2}{1 + x^2} = \lim_{x \to \pm \infty} \frac{2\cancel{x^2}}{\cancel{x^2}} = \frac{2}{1} = 2 $

So the horizontal asymptote is $y = 2$

If we take the derivative of $f(x) = y$


$
\begin{equation}
\begin{aligned}

y' =& \frac{d}{dx} \left( \frac{1 + 2x^2}{1 + x^2} \right)
\\
\\
y' =& \frac{\displaystyle (1 + x^2) \frac{d}{dx} (1 + 2x^2) - (1 + 2x^2) \frac{d}{dx} (1 + x^2) }{(1 + x^2)^2}
\\
\\
y' =& \frac{(1 + x^2) (4x) - (1 + 2x^2)(2x) }{(1 + x^2)^2}
\\
\\
y' =& \frac{4x + \cancel{4x^3} - 2x - \cancel{4x^3}}{(1 + x^2)^2}
\\
\\
y' =& \frac{2x}{(1 + x^2)^2}

\end{aligned}
\end{equation}
$


when $y' = 0$


$
\begin{equation}
\begin{aligned}

0 =& \frac{2x}{(1 + x^2)^2}
\\
\\
2x =& 0
\\
\\
\frac{\cancel{2}x}{\cancel{2}} =& \frac{0}{2}
\\
\\
x =& 0

\end{aligned}
\end{equation}
$


The critical number is $x = 0$

Hence, the intervals of increase or decrease are

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f'(x)/y' & f \\
x < 0 & - & \text{decreasing on } (- \infty, 0) \\
x > 0 & + & \text{increasing on } (0, \infty)\\
\hline
\end{array}
$

Since $f'(x)$ changes from negative to positive at $x = 0, f(0) = 1$ is a local minimum.

Solving for concavity and inflection points

If $\displaystyle y' = \frac{2x}{(1 + x^2)^2}$, then


$
\begin{equation}
\begin{aligned}

y'' =& \frac{d}{dx} \left[ \frac{2x}{(1 + x^2)^2} \right]
\\
\\
y'' =& \frac{\displaystyle (1 + x^2)^2 \frac{d}{dx} (2x) - (2x) \frac{d}{dx} (1 + x^2) }{[(1 + x^2)^2]^2}
\\
\\
y'' =& \frac{\displaystyle (1 + x^2)^2 (2) = (2x)(2) (1 + x^2) \frac{d}{dx} (1 + x^2) }{(1 + x^2)^4}
\\
\\
y'' =& \frac{(1 + 2x^2 + x^4)(2) - (4x)(1 + x^2)(2x) }{(1 + x^2)^4}
\\
\\
y'' =& \frac{2 + 4x^2 + 2x^4 - (8x^2 + 8x^4)}{(1 + x^2)^4}
\\
\\
y'' =& \frac{2 + 4x^2 + 2x^4 - 8x^2 - 8x^4}{(1 + x^2)^4}
\\
\\
y'' =& \frac{2 - 4x^2 - 6x^4}{(1 + x^2)^4}
\\
\\
y'' =& \frac{(2 - 6x^2)(1 + x^2)}{(1 + x^2)^4}
\\
\\
y'' =& \frac{2 - 6x^2}{(1 + x^2)^3}



\end{aligned}
\end{equation}
$


when $y'' = 0$


$
\begin{equation}
\begin{aligned}

0 =& \frac{2 - 6x^2}{(1 + x^2)^2}
\\
\\
0 =& 2 - 6x^2
\\
\\
6x^2 =& 2
\\
\\
x^2 =& \frac{2}{6}
\\
\\
x =& \pm \sqrt{\frac{1}{3}}

\end{aligned}
\end{equation}
$


Therefore the inflection points are

$\displaystyle f \left( \sqrt{\frac{1}{3}} \right) = \frac{5}{4}$ and $\displaystyle f \left(- \sqrt{\frac{1}{3}} \right) = \frac{5}{4}$

Thus, concavity is...

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f''(x) & \text{Concavity} \\
\hline\\
\displaystyle x < - \sqrt{\frac{1}{3}} & - & \text{Downward} \\
\hline\\
\displaystyle - \sqrt{\frac{1}{3}} < x < \sqrt{\frac{1}{3}}& + & \text{Upward} \\
\hline\\
\displaystyle x > \sqrt{\frac{1}{3}} & - & \text{Downward}\\
\hline
\end{array}
$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?