Calculus of a Single Variable, Chapter 6, 6.3, Section 6.3, Problem 23

In the following answer, I assume that k and P_0 are constants.
Then, the given differential equation can be solved by separation of variables:
dP - kPdt = 0
dP = kPdt
Dividing by P results in
(dP)/P = kdt .
Integrating both sides, we obtain
lnP = kt + C , where C is an arbitrary constant. We can now solve for P(t) by rewriting the natural logarithmic equation as an exponential (with the base e) equation:
P = e^(kt + C) .
So, the general solution of the equation is P(t) = e^(kt + C) . Since the initial condition is P(0) = P_0 , we can find C:
P(0) = e^(0 + C) = e^C = P_0 . Therefore,
P(t) = e^(kt)*e^C = P_0e^(kt)
The particular solution of the equation with the given initial condition is
P(t) = P_0e^(kt)

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?