Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 24

Show that the formulas for the derivatives of the functions a.) $\cos hx$, b.) $\tan hx$, c.) $\csc hx$ ,d.) $\sec hx$ and e.) $\cot hx$

a.) $\cos hx$


$
\begin{equation}
\begin{aligned}

\cos hx =& \frac{e^x + e^{-x}}{2}
\\
\\
\frac{d}{dx} (\cos hx) =& \frac{d}{dx} \left( \frac{e^x + e^{-x}}{2} \right)
\\
\\
\frac{d}{dx} (\cos hx) =& \frac{\displaystyle (2) \frac{d}{dx} (e^x + e^{-x}) - (e^x + e^{-x}) \frac{d}{dx} (2) }{(2)^2}
\\
\\
\frac{d}{dx} (\cos hx) =& \frac{2 [e^x + (-e^{-x})]}{4}
\\
\\
\frac{d}{dx} (\cos hx) =& \frac{e^x - e^{-x}}{2}

\end{aligned}
\end{equation}
$


We know that $\displaystyle \sin h(x) = \frac{e^x - e^{-x}}{2}$, so

$\displaystyle \frac{d}{dx} (\cos hx) = \sin hx$

b.) $\tan hx$


$
\begin{equation}
\begin{aligned}

\tan hx =& \frac{\sin hx}{\cos hx}
\\
\\
\frac{d}{dx} \tan hx =& \frac{d}{dx} \left( \frac{\sin hx}{\cos hx} \right)
\\
\\
\frac{d}{dx} \tan hx =& \frac{\displaystyle (\cos hx) \frac{d}{dx} (\sin hx) - (\sin hx) \frac{d}{dx} (\cos hx) }{(\cos hx)^2}
\\
\\
\frac{d}{dx} \tan hx =& \frac{(\cos hx) (\cos hx) - (\sin hx)(\sin hx)}{\cos h^2 x}
\\
\\
\frac{d}{dx} \tan hx =& \frac{\cos h^2 x - \sin h^2 x}{\cos h^2 x}


\end{aligned}
\end{equation}
$



We know that $\cos h^2 x - \sin h^2 x = 1$, so


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} \tan hx =& \frac{1}{\cos h^2 x}
\\
\\
\frac{d}{dx} \tan hx =& \sec h^2 x

\end{aligned}
\end{equation}
$


c.) $\csc hx$


$
\begin{equation}
\begin{aligned}

\csc hx =& \frac{1}{\sin hx}
\\
\\
\csc hx =& (\sin hx)^{-1}
\\
\\
\frac{d}{dx} (\csc hx) =& \frac{d}{dx} (\sin hx)^{-1}
\\
\\
\frac{d}{dx} (\csc hx) =& -(\sin hx)^{-2} \frac{d}{dx} (\sin hx)
\\
\\
\frac{d}{dx} (\csc hx) =& - (\sin hx)^{-2} (\cos hx)
\\
\\
\frac{d}{dx} (\csc hx) =& \frac{-1}{\sin h^2 x} \cdot \cos hx
\\
\\
\frac{d}{dx} (\csc hx) =& \frac{- \cos hx}{\sin hx} \cdot \frac{1}{\sin hx}
\\
\\
\frac{d}{dx} (\csc hx) =& - \cot hx \csc hx


\end{aligned}
\end{equation}
$


d.) $\sec hx$


$
\begin{equation}
\begin{aligned}

\sec hx =& \frac{1}{\cos hx}
\\
\\
\sec hx =& (\cos hx)^{-1}
\\
\\
\frac{d}{dx} (\sec hx) =& \frac{d}{dx} (\cos hx)^{-1}
\\
\\
\frac{d}{dx} (\sec hx) =& - (\cos hx)^{-2} \frac{d}{dx} (\cos hx)
\\
\\
\frac{d}{dx} (\sec hx) =& - (\cos hx)^{-2} (\sin hx)
\\
\\
\frac{d}{dx} (\sec hx) =& \frac{-1}{\cos h^2 x} \cdot \sin hx
\\
\\
\frac{d}{dx} (\sec hx) =& \frac{- \sin hx}{\cos hx} \cdot \frac{1}{\cos hx}
\\
\\
\frac{d}{dx} (\sec hx) =& - \tan hx \sec hx

\end{aligned}
\end{equation}
$


e.) $\cot hx$


$
\begin{equation}
\begin{aligned}

\cot hx =& \frac{\csc hx}{\sin hx}
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{d}{dx} \left( \frac{\cos hx}{\sin hx} \right)
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{\displaystyle (\sin hx) \frac{d}{dx} (\cos hx) - (\cos hx) \frac{d}{dx} (\sin hx)}{(\sin hx)^2}
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{(\sin hx)(\sin hx) - (\cos hx)(\cos hx)}{\sin h^2x}
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{\sin h^2 x - \cos h^2 x}{\sin h^2 x}
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{- (\cos h^2 x - \sin h^2 x)}{\sin h^2 x}

\end{aligned}
\end{equation}
$


We know that $\cos h^2 x - \sin h^2 x = 1$


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (\cot hx) =& \frac{-1}{\sin h^2 x}
\\
\\
\frac{d}{dx} (\cot hx) =& - \csc h^2 x

\end{aligned}
\end{equation}
$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?