Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 48
Determine the equation of the tangent line to the curve $\displaystyle y = \frac{e^x}{x}$ at the point $(1, e)$.
$
\begin{equation}
\begin{aligned}
\text{if } y =& \frac{e^x}{x} , \text{ then by using Quotient Rule...}
\\
\\
y' =& \frac{x(e^x) - e^x(1) }{(x)^2}
\\
\\
y' =& \frac{e^x(x - 1)}{x^2}
\end{aligned}
\end{equation}
$
Recall that the first derivative is equal to the slope of the line at some point...
So when $x = 1$,
$\displaystyle y' = m = \frac{e^1 (1 - 1)}{(1^2)} = 0$
Therefore, the equation of the tangent line can be determined using point slope form
$
\begin{equation}
\begin{aligned}
y - y_1 =& m(x - x_1)
\\
\\
y - e =& 0 (x - 1)
\\
\\
y =& e
\end{aligned}
\end{equation}
$
Comments
Post a Comment