sum_(n=0)^oo (2n)!x^(2n)/(n!) Find the radius of convergence of the power series.

sum_(n=0)^oo (2n)! x^(2n)/(n!)
To find radius of convergence of a series sum a_n , apply the Ratio Test. 
L = lim_(n->oo) |a_(n+1)/a_n|
L=lim_(n->oo)| ((2(n+1))! x^(2(n+1))/((n+1)!))/((2n)! x^(2n)/(n!))|
L=lim_(n->oo) | ((2n+2)!)/((2n)!) * (x^(2n+2)/((n+1)!))/(x^(2n)/(n!))|
L=lim_(n->oo) | ((2n+2)!)/((2n)!) * x^(2n+2)/((n+1)!)*(n!)/x^(2n)|
L= lim_(n->oo) | ((2n+2)(2n+1)(2n)!)/((2n)!) * x^(2n+2)/((n+1)n!)*(n!)/x^(2n)|
L=lim_(n->oo) | ((2n+2)(2n+1)x^2)/(n+1)|
L=lim_(n->oo)|(2(n+1)(2n+1)x^2)/(n+1)|
L=lim_(n->oo) |(2(2n+1)x^2|
L=|2x^2|lim_(n->oo) |2n+1|
L=|2x^2| * oo
L=oo
Take note that in Ratio Test,  the series diverges when L > 1.
So the series diverges except at x=0.
Since the series converges at x=0 only, therefore, the radius of convergence is R=0.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?