College Algebra, Chapter 2, 2.2, Section 2.2, Problem 72

Show that the equation $\displaystyle x^2 + y^2 + \frac{1}{2} x + 2y + \frac{1}{16} = 0$ represents a circle. Find the center and radius of the circle.


$
\begin{equation}
\begin{aligned}

x^2 + y^2 + \frac{1}{2} x + 2y + \frac{1}{16} =& 0
&& \text{Model}
\\
\\
\left( x^2 + \frac{1}{2} x + \underline{ } \right) + (y^2 + 2y + \underline{ }) =& \frac{-1}{16}
&& \text{Group terms and subtract } \frac{1}{16}
\\
\\
\left( x^2 + \frac{1}{2}x + \underline{\frac{1}{16}} \right) + (y^2 + 2y + \underline{1}) =& \frac{-1}{16} + \frac{1}{16} + 1
&& \text{Complete the square: add } \left( \frac{\displaystyle \frac{1}{2}}{2} \right)^2 = \frac{1}{16} \text{ and } \left( \frac{2}{2} \right)^2 = 1
\\
\\
\left( x + \frac{1}{4} \right)^2 + (y + 1)^2 =& 1
&& \text{Perfect Square}

\end{aligned}
\end{equation}
$


Recall that the general equation for the circle with
circle $(h,k)$ and radius $r$ is..

$(x - h)^2 + (y - k)^2 = r^2$

By observation,

The center is at $\displaystyle \left( \frac{-1}{4}, -1 \right)$ and the radius is $1$.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?