sum_(n=1)^oo n(7/8)^n Use the Root Test to determine the convergence or divergence of the series.

To apply the Root test on a series sum a_n , we determine a limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or
lim_(n-gtoo) |a_n|^(1/n)= L
Then, we follow the conditions:
a) Llt1 then the series is absolutely convergent.
b) Lgt1 then the series is divergent.
c) L=1 or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
In order to apply the Root Test in determining the convergence or divergence of the series sum_(n=1)^oo n(7/8)^n , we let : a_n =n(7/8)^n .
Applying the Root test, we set-up the limit as: 
lim_(n-gtoo) |n(7/8)^n|^(1/n) =lim_(n-gtoo) (n(7/8)^n)^(1/n)
Apply Law of  Exponents: (x*y)^n = x^n*y^n and (x^n)^m = x^(n*m) .
lim_(n-gtoo) (n(7/8)^n)^(1/n)=lim_(n-gtoo) n^(1/n) ((7/8)^n)^(1/n)
                               =lim_(n-gtoo) n^(1/n) (7/8)^(n*1/n)
                               =lim_(n-gtoo) n^(1/n) (7/8)^(n/n)
                               =lim_(n-gtoo) n^(1/n) (7/8)^1
                               =lim_(n-gtoo) 7/8n^(1/n)
Evaluate the limit.
lim_(n-gtoo) 7/8n^(1/n) =7/8 lim_(n-gtoo) n^(1/n)           
                    =7/8 *1
                    =7/8 or 0.875
The limit value L =7/8 or 0.875 satisfies the condition: L<1 since 7/8lt1 or 0.875lt1.
Conclusion: The series sum_(n=1)^oo n(7/8)^n is  absolutely convergent.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?