College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 18

Find the complete solution of the system
$
\left\{
\begin{equation}
\begin{aligned}

x +2y +3z =& 2
\\
2x - y - 5z =& 1
\\
4x + 3y + z =& 6

\end{aligned}
\end{equation}
\right.
$
using Gauss-Jordan Elimination.

We transform the system into reduced row-echelon form

$\displaystyle \left[
\begin{array}{cccc}
1 & 2 & 3 & 2 \\
2 & -1 & -5 & 1 \\
4 & 3 & 1 & 6
\end{array}
\right]$

$R_2 - 2 R_1 \to R_2$

$\displaystyle \left[
\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & -5 & -11 & -3 \\
4 & 3 & 1 & 6
\end{array}
\right]$

$R_3 - 4 R_1 \to R_3$

$\displaystyle \left[
\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & -5 & -11 & -3 \\
0 & -5 & -11 & -2
\end{array}
\right]$

$\displaystyle \frac{-1}{5} R_2$

$\displaystyle \left[
\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & 1 & \displaystyle \frac{11}{5} & \displaystyle \frac{3}{5} \\
0 & -5 & -11 & -2
\end{array}
\right]$

$R_3 + 5 R_2 \to R_3$

$\displaystyle \left[
\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & 1 & \displaystyle \frac{11}{5} & \displaystyle \frac{3}{5} \\
0 & 0 & 0 & 1
\end{array}
\right]$

$\displaystyle R_2 - \frac{3}{5} R_3 \to R_2$

$\displaystyle \left[
\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & 1 & \displaystyle \frac{11}{5} & 0 \\
0 & 0 & 0 & 1
\end{array}
\right]
$

$R_1 - 2 R_3 \to R_1$

$\displaystyle \left[
\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 1 & \displaystyle \frac{11}{5} & 0 \\
0 & 0 & 0 & 1
\end{array}
\right]$

$R_1 - 2 R_2 \to R_1$

$\displaystyle \left[
\begin{array}{cccc}
1 & 0 & \displaystyle \frac{-7}{5} & 0 \\
0 & 1 & \displaystyle \frac{11}{5} & 0 \\
0 & 0 & 0 & 1
\end{array}
\right]$

This is in reduced row echelon form. If we translate the last row back into equation, we get $0x + 0y + 0z = 1$, or $0 = 1$, which is false. This that the system has no solution or it is inconsistent.

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?