Find the point of intersection of the tangents to the curve y^2 -3xy + x^3 = 3 at the points where x=-1.

Hello!
The steps are: 1) find the tangent points, 2) find the equations of the tangents, 3) find the intersection of the tangents.
1. It is known that x=-1. Substitute it to the curve equation and obtain an equation for y:
y^2+3y-1=3, or y^2+3y-4=0.
The solutions are y_1=1 and y_2=-4. So the points of tangent are T_1(-1,1) and T_2(-1,-4).
2. Differentiate the equation d/(dx):
2yy' - 3y - 3xy' + 3x^2 = 0, or y'(2y - 3x) = 3y - 3x^2, or
y'=(3(y-x^2))/(2y-3x).
For T_1 we obtain that y'=0. Thus the tangent is a horizontal line with the equation y=1.
For T_2 we obtain y'=(3(-4 - 1))/(2*(-4) - 3*(-1)) = -15/(-5) = 3. Thus the equation is y=3(x+1)-4 = 3x-1.
3. The point of intersection has y=1 and x from the equation 1=3x-1, i.e. x=2/3. So the answer is the point (2/3, 1).
The graph is at the link.
https://www.desmos.com/calculator/touovjs2zr

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?