College Algebra, Chapter 1, 1.3, Section 1.3, Problem 64

Solve $\displaystyle \frac{1}{r} + \frac{2}{1 - r} = \frac{4}{r^2}$ for $r$.


$
\begin{equation}
\begin{aligned}

\frac{1}{r} + \frac{2}{1 - r} =& \frac{4}{r^2}
&& \text{Given}
\\
\\
\frac{(1 - r) + 2(r)}{r - r^2} =& \frac{4}{r^2}
&& \text{Get the LCD of the left side}
\\
\\
\frac{1 + r}{r - r^2} =& \frac{4}{r^2}
&& \text{Simplify the numerator}
\\
\\
r^2 (1 + r) =& 4(r - r^2)
&& \text{Apply cross multiplication}
\\
\\
r^2 + r^3 =& 4r - 4r^2
&& \text{Apply Distributive Property}
\\
\\
r^3 + 5r^2 - 4r =& 0
&& \text{Combine like terms}
\\
\\
r(r^2 + 5r - 4) =& 0
&& \text{Factor out $r$, then eliminate}
\\
\\
r^2 + 5r =& 4
&& \text{Add 4}
\\
\\
r^2 + 5r + \frac{25}{4} =& 4 + \frac{25}{4}
&& \text{Complete the square: add } \left( \frac{5}{2} \right)^2 = \frac{25}{4}
\\
\\
\left( r + \frac{5}{2} \right)^2 =& \frac{41}{4}
&& \text{Perfect square}
\\
\\
r + \frac{5}{2} =& \pm \sqrt{\frac{41}{4}}
&& \text{Take the square root}
\\
\\
r =& \frac{-5}{2} \pm \sqrt{\frac{41}{4}}
&& \text{Subtract } \frac{5}{2}
\\
\\
r =& \frac{-5 + \sqrt{41}}{2} \text{ and } r = \frac{-5 - \sqrt{41}}{2}
&& \text{Solve for } r



\end{aligned}
\end{equation}
$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?