int (x^2-1)/(x^3+x) dx Use partial fractions to find the indefinite integral

int(x^2-1)/(x^3+x)dx
(x^2-1)/(x^3+x)=(x^2-1)/(x(x^2+1))
Now let's create partial fraction template,
(x^2-1)/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)
Multiply equation by the denominator,
(x^2-1)=A(x^2+1)+(Bx+C)x
(x^2-1)=Ax^2+A+Bx^2+Cx
x^2-1=(A+B)x^2+Cx+A
Comparing the coefficients of the like terms,
A+B=1  ----------------(1)
C=0
A=-1
Plug the value of A in equation 1,
-1+B=1
B=2
Plug in the values of A,B and C in the partial fraction template,
(x^2-1)/(x(x^2+1))=-1/x+(2x)/(x^2+1)
int(x^2-1)/(x^3+x)dx=int(-1/x+(2x)/(x^2+1))dx
Apply the sum rule,
=int-1/xdx+int(2x)/(x^2+1)dx
Take the constant out,
=-1int1/xdx+2intx/(x^2+1)dx
Now evaluate both the integrals separately,
int1/xdx=ln|x|
Now let's evaluate second integral,
intx/(x^2+1)dx
Apply integral substitution: u=x^2+1
du=2xdx
=int1/u(du)/2
=1/2int1/udu
=1/2ln|u|
Substitute back u=x^2+1
=1/2ln|x^2+1|
int(x^2-1)/(x^3+x)dx=-ln|x|+2(1/2ln|x^2+1|)
Simplify and add a constant C to the solution,
=-ln|x|+ln|x^2+1|+C
 

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?