Beginning Algebra With Applications, Chapter 3, 3.3, Section 3.3, Problem 136
Evaluate $4 + 2(3-2y) \leq 4(3y - 5) - 6y$
$
\begin{equation}
\begin{aligned}
4 + 2(3) - 2(2y) &\leq 4 (3y) - 4(5) - 6y && \text{Use the Distributive Property to remove the parenthesis}\\
\\
4 + 6 - 4y &\leq 12y - 20 - 6y && \text{Simplify}\\
\\
4 +6 - 4y &\leq 12 y - 20 - 6y && \text{Group terms}\\
\\
-10y &\leq -30 && \text{Combine like terms}\\
\\
\frac{-10y}{-10} &\leq \frac{-30}{-10} && \text{Divide each side by -10}\\
\\
y &\geq 3 && \text{Remember that if you divide or multiply numbers ,the inequality symbol reverses}
\end{aligned}
\end{equation}
$
Comments
Post a Comment