Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 28
If $\displaystyle f(x) = \frac{x^2 + 1}{x - 2}$, find $f'(a)$. Using the definition of the derivative $ \begin{equation} \begin{aligned} f'(a) &= \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} && \\ \\ f'(a) &= \lim_{h \to 0} \frac{\displaystyle \frac{(a + h)^2 + 1}{a + h - 2} - \frac{a^2 + 1}{a - 2}}{h} && \text{Substitute $f(a + h)$ and $f(a)$}\\ \\ f'(a) &= \lim_{h \to 0} \frac{(a - 2)(a^2 + 2ah + h^2 + 1) - (a^2 + 1)(a + h - 2)}{(h)(a + h -2)(a - 2)} && \text{Get the LCD of the numerator and simplify}\\ \\ f'(a) &= \lim_{h \to 0} \frac{a^3 + 2a^2 h + ah^2 +a - 2a^2 - 4ah - 2h^2 - 2 - a^3 - a^2 h +2a^2 - a - h + 2}{(h)(a + h -2)(a - 2)} && \text{Expand the equation}\\ \\ f'(a) &= \lim_{h \to 0} \frac{\cancel{a^3} + 2a^2 h + ah^2 + \cancel{a} - \cancel{2a^2} - 4ah - 2h^2 - \cancel{2} - \cancel{a^3} - a^2 h + \cancel{2a^2} - \cancel{a} - h + \cancel{ 2}}{(h)(a + h -2)(a - 2)} && \text{Combine like t...