f(x)=e^(4x) , n=4 Find the n'th Maclaurin polynomial for the function.

Maclaurin series is a special case of Taylor series that is centered at a=0. The expansion of the function about 0 follows the formula:
f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n
 or
f(x)= f(0)+(f'(0)x)/(1!)+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...
To determine the 4th Maclaurin polynomial from the given function f(x)=e^(4x) ,
we may apply derivative formula for exponential function: d/(dx) e^u = e^u * (du)/(dx)
Let u =4x then (du)/(dx)= 4
Applying the values on the derivative formula for exponential function, we get:
 d/(dx) e^(4x) = e^(4x) *4
Applying d/(dx) e^(4x)= 4e^(4x)  for each f^n(x) , we get:
f'(x) = d/(dx) e^(4x)
          =e^(4x) * 4
         = 4e^(4x)
f^2(x) = 4 *d/(dx) e^(4x)
           = 4*4e^(4x)
           =16e^(4x)
f^3(x) = 16*d/(dx) e^(4x)
          = 16*4e^(4x)
          =64e^(4x)
f^4(x) = 64*d/(dx) e^(4x)
      = 64*4e^(4x)
      =256e^(4x)
Plug-in x=0 , we get:
f(0) =e^(4*0) =1
f'(0) =4e^(4*0)=4
f^2(0) =16e^(4*0)=16
f^3(0) =64e^(4*0)=64
f^4(0) =2564e^(4*0)=256
Note: e^(4*0)=e^0 =1 .
Plug-in the values on the formula for Maclaurin series. 
f(x)=sum_(n=0)^4 (f^n(0))/(n!) x^n
         = 1+4/(1!)x+16x^2+64x^3+256/(4!)x^4
        =1+ 4/1x +16/(1*2)x^2 + 64/(1*2*3)x^3 +256/(1*2*3*4)x^4
        =1+ 4/1x +16/2x^2 + 64/6x^3 +256/24x^4
        = 1+4x+ 8x^2 + 32/3x^3 + 32/3x^4
The 4th Maclaurin polynomial for the given function f(x)= e^(4x) will be:
e^(4x) =1+4x+ 8x^2 + 32/3x^3 + 32/3x^4
or P_4(x) =1+4x+ 8x^2 + 32/3x^3 + 32/3x^4

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?