f(x)=3/(2x-1) ,c=2 Find a power series for the function, centered at c and determine the interval of convergence.

To determine the power series centered at c, we may apply the formula for Taylor series:
f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n
or
f(x) =f(c)+f'(c)(x-c) +(f''(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f'^4(c))/(4!)(x-c)^4 +...
To list the f^n(x) for the given function  f(x)=3/(2x-1) centered at c=2 , we may apply Law of Exponent: 1/x^n = x^-n  and  Power rule for derivative: d/(dx) x^n= n *x^(n-1) .
f(x) =3/(2x-1)
           =3(2x-1)^(-1)
Let u =2x-1 then (du)/(dx) = 2
d/(dx) c*(2x-1)^n = c *d/(dx) (2x-1)^n
                           = c *(n* (2x-1)^(n-1)*2
                            = 2cn(2x-1)^(n-1)
f'(x) =d/(dx) 3(2x-1)^(-1)
            =2*3*(-1)(2x-1)^(-1-1)
            =-6(2x-1)^(-2) or 2/(2x-1)^2
f^2(x) =d/(dx) -6(2x-1)^(-2)
            =2*(-6)(-2)(2x-1)^(-2-1)
             =24(2x-1)^(-3) or 24/(2x-1)^3
f^3(x) =d/(dx) 24(2x-1)^(-3)
           =2*(24)(-3)(2x-1)^(-3-1)
           =-144(2x-1)^(-4) or -144/(2x-1)^4
Plug-in x=2 for each f^n(x), we get:
f(2)=3/(2(2)-1)
          =3/ 3
          =1
f'(2)=-6/(2(2)-1)^2
          =-6/3^2
          = -2/3
f^2(2)=24/(2(2)-1)^3
            =24/3^3
            =8/9
f^3(2)=-144/(2(2)-1)^4
            =-144/3^4
            = -16/9
Plug-in the values on the formula for Taylor series, we get:
3/(2x-1) = sum_(n=0)^oo (f^n(2))/(n!) (x-2)^n
= sum_(n=0)^oo (f^n(2))/(n!) (x-2)^n
=1+(-2/3)(x-2) +(8/9)/(2!)(x-2)^2 +(-16/9)/(3!)(x-2)^3 +...
=1-2/3(x-2) +(8/9)/2(x-2)^2 +(-16/9)/6(x-2)^3 +...
=1-2/3(x-2) +4/9(x-2)^2 +8/27(x-2)^3 +...
= sum_(n=0)^oo (-(2(x-2))/3)^n
To determine the interval of convergence, we may apply geometric series test wherein the series sum_(n=0)^oo a*r^n  is convergent if |r|lt1 or -1 ltrlt 1 . If |r|gt=1 then the geometric series diverges.
By comparing  sum_(n=0)^oo (-(2(x-2))/3)^n with  sum_(n=0)^oo a*r^n , we determine: r = -(2(x-2))/3 .
Apply the condition for convergence of geometric series: |r|lt1 .
|-(2(x-2))/3|lt1
|-1|*|(2(x-2))/3|lt1
1*|(2(x-2))/3|lt1
|(2(x-2))/3|lt1
|(2x-4)/3|lt1
-1lt(2x-4)/3lt1
Multiply each sides by 3 :
-1*3lt(2x-4)/3*3lt1*3
-3lt2x-4lt3
Add 4 on each sides:
-3+4lt2x-4+4lt3+4
1lt2xlt7
Divide each side by 2 :
1/2lt2x/2lt7/2
1/2ltxlt7/2
Thus, the power series  of the function f(x) =3/(2x-1) centered at c=2 is sum_(n=0)^oo (-(2(x-2))/3)^n  and has an interval of convergence: 1/2ltxlt7/2 .

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?