An object is pushed into the water with a certain amount of force. Calculate the speed of the object after it is released from equilibrium at a height h.

First calculate how submerged the block is when in equilibrium. Let the up direction be negative and the down direction be positive.
F_b=F_g+F
rho_w*V_d*g=rho*V*g+F, rho=S_g*rho_w
rho_w(1^2*x)g=S_g*rho_w(1^3)g+2000 ,Where x=the distance from the surface to the bottom of the block (here is why I have the downward direction as positive).
Then solve for x:
x=S_g+2000/(rho_w*g)=0.6+2000/(1000*10)=0.8 meters
Now to calculate the velocity, at a height h, we must neglect the drag force then use the work kinetic energy theorem.
W=Delta*K
int_0.8^h F(x) *dx=1/2m*v^2
The initial velocity is zero. F(x) is the net force on the block after it is released as a function of the distance submerged. We are only considering when h<0.8m, this is the only region where there is a buoyant force.
 (2/m)int_0.8^h (F_g-F_b(x)) *dx=v^2
(2/(S_g*rho_w*1^3))int_0.8^h (S_g*rho_w*g-rho_w*x*g) *dx=v^2
2g int_0.8^h dx -(2g)/(S_g) int_0.8^h x dx=v^2
2g(h-0.8)-g/(S_g)(h^2-0.8^2)=v^2
(2g(h-0.8)-(g)/(S_g)(h^2-0.8^2))^(1/2)=v(h) 
Here is velocity as a function of height where h<0.8m.

The graph starts at height =0.8 m on the x axis. It then goes to zero m/s at height=0.4 m so the block will stop before it breaks free of the surface at height=0.
 

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

In “Goodbye to All That,” Joan Didion writes that the “lesson” of her story is that “it is distinctly possible to remain too long at the fair.” What does she mean? How does the final section of the essay portray how she came to this understanding, her feelings about it, and the consequences of it?

Why does the poet say "all the men and women merely players"?