sum_(n=1)^oo 1/n^(1/4) Use the Integral Test to determine the convergence or divergence of the p-series.

The Integral test is applicable if f is positive and decreasing function on the infinite interval [k, oo) where kgt= 1 and a_n=f(x) . Then the series sum_(n=1)^oo a_n converges if and only if the improper integral int_1^oo f(x) dx converges. If the integral diverges then the series also diverges.
For the given series sum_(n=1)^oo 1/n^(1/4) , the a_n = 1/n^(1/4) then applying a_n=f(x) , we consider:
f(x) = 1/x^(1/4) .  
As shown on the graph of f(x), the function is positive on the interval [1,oo) . As x at the denominator side gets larger, the function value decreases.
 
Therefore, we may determine the convergence of the improper integral as:
int_1^oo 1/x^(1/4) = lim_(t-gtoo)int_1^t 1/x^(1/4) dx
Apply the Law of exponents: 1/x^m = x^(-m) .
lim_(t-gtoo)int_1^t 1/x^(1/4) dx =lim_(t-gtoo)int_1^t x^(-1/4) dx
Apply the Power rule for integration: int x^n dx = x^(n+1)/(n+1) .
lim_(t-gtoo)int_1^t x^(-1/4) dx=lim_(t-gtoo)[ x^(-1/4+1)/(-1/4+1)]|_1^t
                                =lim_(t-gtoo)[ x^(3/4)/(3/4)]|_1^t
                                =lim_(t-gtoo)[ x^(3/4)*(4/3)]|_1^t
                               =lim_(t-gtoo)[ (4x^(3/4))/3]|_1^t
Apply the definite integral formula: F(x)|_a^b = F(b)-F(a) .
lim_(t-gtoo)[ (4x^(3/4))/3]|_1^t=lim_(t-gtoo)[ (4*t^(3/4))/3-(4*1^(3/4))/3]
                          =lim_(t-gtoo)[(4t^(3/4))/3-(4*1)/3]
                          =lim_(t-gtoo)[(4t^(3/4))/3-4/3]
                          = oo
The lim_(t-gtoo)[ (4x^(3/4))/3]|_1^t= oo implies that the integral diverges.
Note: Divergence test states if lim_(n-gtoo)a_n!=0 or does not exist then the sum_(n=1)^oo a_n  diverges.
Conclusion: The integral int_1^oo 1/x^(1/4) diverges therefore the series sum_(n=1)^oo 1/n^(1/4) must also diverges. 

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?