Beginning Algebra With Applications, Chapter 2, 2.2, Section 2.2, Problem 178

Simplify $\displaystyle -\frac{1}{4} [2x + 2(y -6y)]$

$
\begin{equation}
\begin{aligned}
&= -\frac{1}{4} [2x + 2(y) - 2(6y)] && \text{Use the Distributive Property}\\
\\
&= -\frac{1}{4} [2x + 2(y) - (2 \cdot 6) y] && \text{Use the Associative Property of Multiplication to group factors}\\
\\
&= -\frac{1}{4} [2x + 2y - 12y] && \text{Simplify}\\
\\
&= -\frac{1}{4} [2x - 10y] && \text{Combine like terms}\\
\\
&= -\frac{1}{4} (2x) - \left( -\frac{1}{4} \right) (10y) && \text{Again, use the Distributive Property}\\
\\
&= \left(\left( -\frac{1}{4} \right) \cdot 2 \right) x + \left( \frac{1}{4} \cdot 10 \right)y && \text{Again, by using the Associative Property of Multiplication to group factors }\\
\\
&= -\frac{2}{4}x + \frac{10}{4}y && \text{Evaluate}\\
\\
&= -\frac{1}{2}x + \frac{5}{2}y && \text{Simplify}
\end{aligned}
\end{equation}
$

Comments

Popular posts from this blog

How does Bilbo show leadership and courage in The Hobbit?

What was the effect of World War II on African Americans?

How is Jack in William Golding's The Lord of the Flies presented as militaristic?